If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+112x-125=0
a = -16; b = 112; c = -125;
Δ = b2-4ac
Δ = 1122-4·(-16)·(-125)
Δ = 4544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4544}=\sqrt{64*71}=\sqrt{64}*\sqrt{71}=8\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(112)-8\sqrt{71}}{2*-16}=\frac{-112-8\sqrt{71}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(112)+8\sqrt{71}}{2*-16}=\frac{-112+8\sqrt{71}}{-32} $
| 0.89=w/7.9-(-0.14 | | 1/2(3x+21)=5x | | (6x7x9=6x(x9) | | 7x-5-6+8x+2=3x+75 | | 3z*21=56 | | 3-2x+5x=-21 | | (-2.4)-0.6x=-11.4 | | x^2-5x-8=x^2-6x+9 | | 15=7x+5x-9 | | 25-44n= | | 2/3h=3 | | 1/x=62 | | 25*(1-x)=10 | | 4g+9=62 | | 1/2m=26 | | 12(x-3)=-12 | | 4x-5=5x-19 | | r+1.6=2.4 | | 9.1=(130)(0.01)t | | 84=7(9x) | | -3(5x-2)-x-2=216 | | 25x(1-x)=10 | | 18y^2=1-3y | | -1.7x=8(x+2.17) | | 3(x÷7+2)=6 | | x2-12x-13=0 | | 2(4q-9)=-4q+3 | | 6/5-(5x-2)=1/5x-12 | | -5t^2+9t+2=4 | | 0=4.9t^2+2t-10 | | r-16.3=-3.8 | | 0.2(10x+18)=4(0.2+5) |